SimSR: Simple Distance-Based State Representations for Deep Reinforcement Learning
Published in AAAI 2022 oral
Recommended citation:Hongyu Zang, Xin Li, Mingzhong Wang: SimSR: Simple Distance-Based State Representations for Deep Reinforcement Learning. AAAI 2022: 8997-9005
Paper link:This work explores how to learn robust and generalizable state representation from image-based observations with deep reinforcement learning methods. Addressing the computational complexity, stringent assumptions and representation collapse challenges in existing work of bisimulation metric, we devise Simple State Representation (SimSR) operator. SimSR enables us to design a stochastic approximation method that can practically learn the mapping functions (encoders) from observations to latent representation space. In addition to the theoretical analysis and comparison with the existing work, we experimented and compared our work with recent state-of-the-art solutions in visual MuJoCo tasks. The results shows that our model generally achieves better performance and has better robustness and good generalization.
@inproceedings{DBLP:conf/aaai/Zang0W22,
author = {Hongyu Zang and
Xin Li and
Mingzhong Wang},
title = {SimSR: Simple Distance-Based State Representations for Deep Reinforcement
Learning},
booktitle = {AAAI, 2022},
pages = {8997--9005},
publisher = {AAAI Press},
year = {2022},
}